# KINETICS AND MECHANISM OF OXIDATION OF SOME DISACCHARIDES—MELIBIOSE, CELLOBIOSE, LACTOSE AND MALTOSE—BY HEXACYANOFERRATE (III) IN ALKALINE MEDIUM

# R. K. SRIVASTAVA, N. NATH and M. P. SINGH Chemistry Department, University of Allahabad, Allahabad India

(Received 24 November 1965; accepted for publication 3 August 1966)

Abstract—The kinetics of oxidation of four disaccharides, namely melibiose, cellobiose, lactose and maltose, have been carried out in alkaline ferricyanide. The order of reaction is zero with respect to ferricyanide and first with respect to reducing sugar. The reaction is base catalysed. The rate expression proposed is

 $-\frac{d[Fe(CN)_{\bullet}]^{-\bullet}}{dt} = k[OH^{-}] [Reducing sugar]$ 

The rates of oxidation of disaccharides follow the order: melibiose > maltose > cellobiose > lactose. The compensating effect between heat and entropy of activation has also been observed.

THE kinetics of the oxidation of reducing sugars have been studied using halogens<sup>1</sup> in alkaline and acidic media. In the kinetics of oxidation of simple monosaccharides as well as disaccharides<sup>2</sup> by alkaline hypoiodide, the order of the reaction with respect to each reactant was found to be unity, that is, the total order of the reaction is two.<sup>2</sup> In the oxidation of different anomeric pairs of aldoses with aqueous bromine,<sup>4</sup> it was found in general that  $\beta$ -forms react faster. It has also been reported<sup>2</sup> that under certain conditions (pH about 9·2), the  $\beta$ -D-form is oxidized approximately 28 times faster than  $\alpha$ -D-anomer. However, Reeve<sup>5</sup> has reported that the rate of mutarotation of the free sugars is greatly enhanced in alkaline solutions, and, beyond the pH range of 11·8, becomes much faster than oxidation, the result being that under these circumstances, both forms are oxidized at identical rates. Prior to the present work, the kinetics of oxidation of some monosaccharides<sup>6</sup> (pentoses and hexoses) was studied with bivalent copper complexed with tartrate and citrate in presence of sodium hydroxide. The reaction being heterogeneous created some difficulty in the measurement of velocity constants. Recently, the kinetics of some aldo and keto

<sup>1</sup> The halogen oxidation of simple carbohydrates by John W. Green in Advances in Carbohydrate Chemistry Vol. 3. Academic Press, New York (1948).

a M. P. Singh, B. Krishna and S. Ghosh, Proc. Natl. Acad. Sci. India A28, Part I, pp. 21-29 (1959),
 b. M. P. Singh, B. Krishna and S. Ghosh, Z. Physik. Chem. 204, 1 (1955); Ibid. 208, 265 (1958).

<sup>&</sup>lt;sup>9</sup> O. G. Ingels and E. C. Israel, J. Chem. Soc. 810 (1948).

<sup>&</sup>lt;sup>9</sup> H. S. Isbell and W. W. Pigman, J. Research Natl. Bur. Standards 10, 337 (1933); Ibid. 18, 141 (1937).

<sup>&</sup>lt;sup>4</sup> Formation and Cleavage of the oxygen rings in sugars by F. Shafizadch in Advances in Carbohydrate Chemistry Vol. 13, Academic Press, New York (1958).

<sup>\*</sup> K. D. Roeve, J. Chem. Soc. 172 (1951).

hexoses have been studied with alkaline ferricyanide.<sup>7</sup> The reaction in this case was homogeneous and thus the results obtained were more accurate. In both cases where bivalent copper and ferricyanide were taken as oxidants, the order of the reaction was found to be zero with respect to oxidant and unity with respect to the reducing sugar. Further, the reactions were base-catalysed.

The present paper deals with the kinetics of oxidation of melibiose, cellobiose, lactose and maltose with potassium ferricyanide in alkaline medium. The effect of previous treatment of reducing sugars with alkali on the reaction rate has also been studied in case of lactose and maltose.



#### **EXPERIMENTAL**

The mixture of  $K_8Fe(CN)_6$  and alkali was kept in a black coated Jena bottle maintained at constant temp, within  $\pm 0.1^\circ$  by an electrically operated thermostat, and the fresh soln of reducing sugar was also kept separately in the same bath. The reaction was started by adding the sugar and the time was measured with a stop watch. Immediately, 5 ml of the aliquot was taken out and poured into a beaker containing 10 ml fresh soln of KI and 10 ml 4N H<sub>2</sub>SO<sub>6</sub> (Analar). Then the remaining  $K_8Fe(CN)_6$  was titrated iodometrically. The function of H<sub>2</sub>SO<sub>6</sub> was to check the reaction by neutralizing the alkali, as well as to help in the liberation of I<sub>2</sub>. All the samples used were of E. Merck grade except lactose,  $K_8Fe(CN)_6$  and alkali which were of B.D.H. (Analar) grade.

#### Determination of the order of reaction with respect to ferricyanide

In order to determine the order of reaction with respect to ferricyanide ion, the concentration of the reducing sugar was kept high. If the concentration of the reducing sugar is in excess in respect

<sup>1</sup> a N. Nath and M. P. Singh, Z. Physik. Chem. 221, 204 (1962); *Ibid.* 224, 419 (1963), b N. Nath and M. P. Singh, J. Phys. Chem. 69, 2038 (1965).

of the concentration of ferricyanide ion, the variation in the velocity of the reaction is determined by the concentration of the latter.

| TABLE 1                                                             |                                                                                                                                                                                                 | TABLE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Te<br>100<br>Ka<br>Na<br>Ma                                         | $\begin{array}{l} \text{mp 30°; total } \\ \text{0 ml; overall c} \\ \text{Fe}(\text{CN})_{\bullet} 2.5 \times \\ \text{OH} \qquad 6.6 \times \\ \text{elibiose} \qquad 6.6 \times \end{array}$ | rol<br>DDCn;<br>10 <sup>-3</sup> M<br>10 <sup>-3</sup> N<br>10 <sup>-3</sup> M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Temp 35°; total vol           ;         100 ml; overall concn;           M         KaFe(CN)a 2·5 × 10-aM           N         NaOH         2·02 × 10-aM           M         Cellobiose         2·5 × 10-aM |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ol<br>ncn;<br>10 <sup>-\$</sup> M<br>10 <sup>-\$</sup> N<br>10 <sup>-\$</sup> M |
| Time<br>(min)                                                       | Vol of<br>N/980 hypo<br>(ml)                                                                                                                                                                    | $\frac{k_{\bullet} \times 10^{\circ}}{-\frac{\Delta x}{\Delta t} \times 10^{\circ}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time<br>(min)                                                                                                                                                                                             | Vol of<br>N/960 hypo<br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $k_0 \times 10^{4}$ $= \frac{\Delta x}{\Delta t} \times 10^{4}$                 |
| - o                                                                 | 12.00                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                         | 11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |
| 10                                                                  | 11.00                                                                                                                                                                                           | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                         | 10-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14-0                                                                            |
| 20                                                                  | 9.90                                                                                                                                                                                            | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                        | 9.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14-0                                                                            |
| 31                                                                  | 8.30                                                                                                                                                                                            | 14-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                        | <b>8</b> ·20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.0                                                                            |
| 40                                                                  | 7.30                                                                                                                                                                                            | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                        | 6.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14-5                                                                            |
| 50                                                                  | 6.10                                                                                                                                                                                            | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                                                                                                                                                                                                        | 5.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14-5                                                                            |
| 60                                                                  | 4.86                                                                                                                                                                                            | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                        | 3.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.0                                                                            |
| 70                                                                  | 3.70                                                                                                                                                                                            | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60                                                                                                                                                                                                        | 2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13-5                                                                            |
| 80                                                                  | 2-54                                                                                                                                                                                            | 11-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | œ                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| æ                                                                   | 0.00                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |
| Man .                                                               | $k_0 2.42 \times (\text{mole } 1^{-1} \text{ m})$                                                                                                                                               | 10-*<br>in-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Juican                                                                                                                                                                                                    | $k_{\rm B}$ 2.95 × 1<br>(mole 1 <sup>-1</sup> mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,<br>0-*<br>n <sup>-1</sup> )                                                   |
|                                                                     | TABLE 3                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           | TABLE 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |
| Te                                                                  | mp 35°; total<br>0 ml: overall                                                                                                                                                                  | vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                           | Temp 30°; tota<br>100 ml; overall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i vol<br>concn;                                                                 |
| K.<br>Ni<br>lac                                                     | $_{\rm a}$ Fe(CN), $3.3 \times$<br>aOH $2.0 \times$<br>ctose $1.0 \times$                                                                                                                       | 10-*M<br>10-*N<br>10-*M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                           | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | × 10-*M<br>× 10-*N<br>× 10-*M                                                   |
| K,<br>Ni<br>lac                                                     | <b>aFe(CN)a</b> 3⋅3 ×<br><b>aOH</b> 2⋅0 ×<br>ctose 1⋅0 ×<br>Vol of                                                                                                                              | $10^{-9}M$<br>$10^{-9}N$<br>$10^{-8}M$<br>$k_{0} \times 10^{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           | KaFe(CN)a         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2 |                                                                                 |
| Time                                                                | ■Fe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo                                                                                                                              | $k_{o} \times 10^{3}$ M<br>$k_{o} \times 10^{3}$ M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | — — —                                                                                                                                                                                                     | K.F.(CN), 2:0 ::<br>NaOH 6:6 ::<br>maltose 6:6 :<br>Vol of<br>N/870 hypo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |
| Time<br>(min)                                                       | •Fe(CN)• 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)                                                                                                                      | $10^{-9}M$ $10^{-9}N$ $10^{-9}M$ $k_0 \times 10^9$ $= \frac{\Delta x}{\Delta t} \times 10^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time<br>(min)                                                                                                                                                                                             | K <sub>a</sub> Fe(CN) <sub>6</sub> 2.0<br>NaOH 6.6<br>maltose 6.6<br>Vol of<br>N/870 hypo<br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |
| Time<br>(min)                                                       | sFe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                  | $10^{-9}M$ $10^{-9}N$ $10^{-9}M$ $k_{0} \times 10^{9}$ $\frac{\Delta x}{\Delta t} \times 10^{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time<br>(min)<br>                                                                                                                                                                                         | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>8:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |
| Time<br>(min)                                                       | sFe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                  | $10^{-9}M$ $10^{-9}N$ $10^{-9}N$ $k_{0} \times 10^{9}$ $\frac{\Delta x}{\Delta t} \times 10^{8}$ $$ $40.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time<br>(min)<br>                                                                                                                                                                                         | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>8:50<br>7:90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |
| Time<br>(min)<br>5                                                  | ■Fe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                  | $10^{-9}M$ $10^{-9}N$ $10^{-9}N$ $\frac{k_{0} \times 10^{9}}{= \frac{\Delta x}{\Delta t} \times 10^{9}}$ $= \frac{40 \cdot 0}{42 \cdot 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time<br>(min)<br>                                                                                                                                                                                         | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>8:50<br>7:90<br>7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |
| Time<br>(min)<br>                                                   | Fe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                   | $ \begin{array}{c} 10^{-9}M \\ 10^{-9}N \\ 10^{-9}N \\ \hline \\                                 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time<br>(min)<br>0<br>10<br>20<br>30                                                                                                                                                                      | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |
| Time<br>(min)<br>0<br>5<br>10<br>15<br>20                           | Fe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                   | $ \begin{array}{c} 10^{-9}M \\ 10^{-9}N \\ 10^{-9}N \\ \hline \\                                 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time<br>(min)<br>0<br>10<br>20<br>30<br>40                                                                                                                                                                | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |
| Time<br>(min)<br>0<br>5<br>10<br>15<br>20<br>251                    | Fe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                   | $ \begin{array}{c} 10^{-9}M \\ 10^{-9}N \\ 10^{-9}N \\ \hline \\  & \frac{10^{-9}N}{\Delta t} \times 10^{9} \\ \hline \\  & \frac{\Delta x}{\Delta t} \times 10^{9} \\ \hline \\  & \frac{40.0}{42.0} \\ \hline \\  & 46.0 \\ \hline \\  & 46.0 \\ \hline \\  & 46.0 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time<br>(min)<br>0<br>10<br>20<br>30<br>40<br>50                                                                                                                                                          | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |
| Time<br>(min)<br>0<br>5<br>10<br>15<br>20<br>251<br>30              | Fe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                   | $ \begin{array}{c} 10^{-9}M \\ 10^{-9}N \\ 10^{-9}N \\ \hline \\  & \frac{10^{-9}N}{-10^{-9}M} \\ \hline \\  & \frac{\Delta x}{\Delta t} \times 10^{-9} \\ \hline \\  & \frac{\Delta x}{\Delta t} \times 10^{-9} \\ \hline \\  & \frac{40.0}{42.0} \\ \hline \\  & \frac{46.0}{46.0} \\ \hline \\  & \frac{46.0}{6.0} \\ \hline \\  & \frac$        | Time<br>(min)<br>0<br>10<br>20<br>30<br>40<br>50<br>60                                                                                                                                                    | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |
| Time<br>(min)<br>0<br>5<br>10<br>15<br>20<br>251<br>30<br>∞         | Fe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                   | $ \begin{array}{c} 10^{-9}M \\ 10^{-9}N \\ 10^{-9}N \\ \hline  & 10^{-9}M \\ \hline  & \frac{\lambda}{\Delta t} \times 10^{9} \\ \hline  & \frac{\Delta x}{\Delta t} \times 10^{9} \\ \hline  & 40.0 \\ 42.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ 46.0 \\ \hline  & 46.0 \\ \hline  &$ | Time<br>(min)<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>70                                                                                                                                              | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |
| Time<br>(min)<br>0<br>5<br>10<br>15<br>20<br>251<br>30<br>∞         | Fe(CN), 3·3 ×<br>aOH 2·0 ×<br>ctose 1·0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                   | $10^{-9}M$ $10^{-9}N$ $10^{-9}N$ $\frac{10^{-9}N}{-7}$ $\frac{\Delta x}{\Delta t} \times 10^{9}$ $\frac{-7}{40.0}$ $40.0$ $42.0$ $46.0$ $46.0$ $46.0$ $46.0$ $46.0$ $-7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time<br>(min)<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>cc                                                                                                                                        | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |
| Time<br>(min)<br>0<br>5<br>10<br>15<br>20<br>251<br>30<br>∞<br>Mean | Fe(CN), 3.3 ×<br>aOH 2.0 ×<br>ctose 1.0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                                   | $10^{-9}M$ $10^{-9}N$ $10^{-9}N$ $\frac{k_{0} \times 10^{9}}{-3}M$ $\frac{\Delta x}{\Delta t} \times 10^{9}$ $\frac{-40}{42.0}$ $\frac{-40}{46.0}$ $\frac{-46.0}{46.0}$ $\frac{-46.0}{46.0}$ $\frac{-1}{10^{-9}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time<br>(min)<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>cc<br>Mean<br>(Nesier                                                                                                                     | K,Fe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |
| Time<br>(min)<br>0<br>5<br>10<br>15<br>20<br>251<br>30<br>∞<br>Mean | Fe(CN), $3.3 \times 3.6$<br>aOH 2.0 ×<br>ctose 1.0 ×<br>Vol of<br>N/950 hypo<br>(ml)<br>                                                                                                        | $10^{-9}M$ $10^{-9}N$ $10^{-9}N$ $\frac{10^{-9}N}{-9}M$ $\frac{10^{-9}}{-9}M$ $\frac{10^{-9}}{-9}M$ $\frac{10^{-9}}{-9}M$ $\frac{10^{-9}}{-9}M$ $\frac{10^{-9}}{-9}M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time<br>(min)<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>60<br>70<br>cc<br>Mean<br>(Negieo                                                                                                         | KsFe(CN), 2:0<br>NaOH 6:6<br>maltose 6:6<br>Vol of<br>N/870 hypo<br>(ml)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |

It was observed that one mole reducing sugar required six moles ferricyanide. Therefore, from Tables 1-4 it is obvious that the minimum ratio of the concentration of reducing sugar to ferricyanide is 6 (Table 2). In other Tables, the molar concentration of reducing sugar is more than 6 times the concentration of ferricyanide. So, the rate of the reaction is determined by the decrease in the concentration of ferricyanide ion. The Tables show that the zero order velocity constants are practically uniform having a slight induction period in some cases. Below each Table  $k_0$  values have been calculated by multiplying  $k_0$  by X/V, where X is the strength of the hypo and V the volume of aliquot taken. Further, order of the reaction with respect to ferricyanide can be confirmed from Table 5.

| Temp | Overa<br>sugar i | ll conc of<br>and alkali   | Overall conc of<br>Ferricyanide<br>× 10 <sup>4</sup> , M | Mean zero-order<br>$k_0 \times 10^4$<br>(Mole 1 <sup>-1</sup> min <sup>-1</sup> ) |
|------|------------------|----------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|
| 30°  | Melibiose        | 6·6 × 10 <sup>-∎</sup> M   | 20.00                                                    | 2.33                                                                              |
|      | NaOH             | 6·6 × 10−³N                | 25.00                                                    | 2.42                                                                              |
|      |                  |                            | 33-00                                                    | 2.38                                                                              |
|      |                  |                            | <b>50-00</b>                                             | 2-45                                                                              |
| 35°  | Cellobiose       | $2.5 \times 10^{-8}$ M     | 20.00                                                    | 2.89                                                                              |
|      | NaOH 2           | 20·20 × 10 <sup>-*</sup> N | <b>25</b> ·00                                            | 2.95                                                                              |
|      |                  |                            | 33-00                                                    | 2-97                                                                              |
|      |                  |                            | 50-00                                                    | 2.91                                                                              |
|      |                  |                            | 50-00                                                    | 2.91                                                                              |
| 35°  | Lactose          | $1.0 \times 10^{-3}$ M     | 20.00                                                    | 9-68                                                                              |
|      | NaOH             | $2.0 \times 10^{-1}$ N     | 25.00                                                    | 9-81                                                                              |
|      |                  |                            | 33.00                                                    | 9-68                                                                              |
|      |                  |                            | 50-00                                                    | 9.60                                                                              |
| 30°  | Maltose          | 6·6 × 10 *M                | 20-00                                                    | 2.16                                                                              |
|      | NaOH             | 6-6 × 10 <sup>-3</sup> N   | 25-00                                                    | 2.11                                                                              |
|      |                  |                            | 33-00                                                    | 2.12                                                                              |

| TABLE 5. | EFFECT OF VARYING THE FERRICYANIDE ION CONCENTRATION |
|----------|------------------------------------------------------|
|          | Total volume of reaction mixture 10 ml               |

Table 5 shows that the reaction rates are independent of ferricyanide ion concentration. This further confirms that the reaction is of zero order with respect to ferricyanide under the experimental conditions used.

From Table 6 it is obvious that the rate constant in case of each sugar, increases in direct proportion to the increase in concentration of reducing sugar. In other words the reaction is of first order with respect to reducing sugar.

From Table 7 it is clear that on dividing  $k_a$  by the sodium hydroxide concentration, practically constant values have been obtained. This leads to the conclusion that the reaction rates are also directly proportional to hydroxyl ion concentration.

# Effect of the previous treatment of lactose and maltose with sodium hydroxide on the reaction rate

The reactants (50 ml) containing alkali and lactose were kept in the thermostat for the period mentioned in Table 8 and then from another bottle 50 ml of  $K_{a}Fe(CN)_{a}$ , previously kept in the thermostat, were added to study the course of reaction. It is clear that during the treatment the conc. of alkali and sugar are twice those of the final concentration.

1192

| Temp | Overall conc<br>of NaOH, N<br>$\times$ 10° | Overall conc<br>of sugar<br>× 10 <sup>4</sup> , M | $k_{s} \times 10^{6}$<br>(mole 1 <sup>-1</sup> min <sup>-1</sup> ) | $\frac{k_{\bullet}}{(\text{sugar})} \times 10^{\bullet}$ |
|------|--------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|
| •    | Melibiose                                  |                                                   |                                                                    |                                                          |
| 30°  | 6.60                                       | 100.00                                            | 3-63                                                               | 3.63                                                     |
|      |                                            | 50-00                                             | 1.80                                                               | 3.60                                                     |
|      |                                            | 40.00                                             | 2.45                                                               | 3.62                                                     |
|      |                                            | 33-00                                             | 1.22                                                               | 3.66                                                     |
|      | Cellobiose                                 |                                                   |                                                                    |                                                          |
| 35°  | 20.00                                      | 66·00                                             | 7.62                                                               | 11-43                                                    |
|      |                                            | 50-00                                             | 5-83                                                               | 11.66                                                    |
|      |                                            | 33·00                                             | 3.76                                                               | 11.28                                                    |
|      |                                            | 25.00                                             | 2.95                                                               | 11.80                                                    |
|      | Lactose                                    |                                                   |                                                                    |                                                          |
| 35°  | 20.00                                      | 66-00                                             | 7.01                                                               | 10-51                                                    |
|      |                                            | 50-00                                             | 5-11                                                               | 10-22                                                    |
|      |                                            | 33-00                                             | 3.63                                                               | 10.08                                                    |
|      |                                            | <b>25</b> ·00                                     | 2.52                                                               | 10-08                                                    |
|      | Maltose                                    |                                                   |                                                                    |                                                          |
| 30°  | 6.60                                       | 200-00                                            | 6.07                                                               | 3.03                                                     |
|      |                                            | 125-00                                            | 3.70                                                               | 2.96                                                     |
|      |                                            | 66-00                                             | <b>2</b> ·11                                                       | 3-16                                                     |
|      |                                            | 50-00                                             | 1.52                                                               | 3-04                                                     |

TABLE 6. EFFECT OF VARYING THE SUGAR CONCENTRATION Total volume of the reaction mixture 100 ml; overall conc of  $K_aFe(CN)_a 2.5 \times 10^{-8}M$ 

TABLE 7. EFFECT OF VARIATION OF HYDROXYL ION CONCENTRATION Total volume of reaction mixture 100 ml; overall conc of  $K_8Fe(CN)_6 2.5 \times 10^{-9}M$ 

| Temp | Overall conc<br>of sugar, M<br>$\times 10^{6}$ | Overall conc<br>of NaOH<br>× 10 <sup>4</sup> , N | $k_{s} \times 10^{s}$<br>(mole 1 <sup>-1</sup> min <sup>-1</sup> ) | $\frac{k_{\rm s}}{[{\rm NaOH}]} \times 10^{6}$ |
|------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|
| -    | Melibiose                                      |                                                  |                                                                    |                                                |
| 30°  | 6.60                                           | 100.00                                           | 3-53                                                               | 3.53                                           |
|      |                                                | 66·00                                            | 2.40                                                               | 3.60                                           |
|      |                                                | <b>50-00</b>                                     | 1-81                                                               | 3.62                                           |
|      |                                                | <b>40</b> ·00                                    | 1.46                                                               | 3.65                                           |
|      | Cellobiose                                     |                                                  |                                                                    |                                                |
| 35°  | 6.60                                           | 200.00                                           | 7.62                                                               | 3-81                                           |
|      |                                                | 125.00                                           | 5-37                                                               | 4-21                                           |
|      |                                                | 100.00                                           | 4-18                                                               | 4-18                                           |
|      |                                                | 66.00                                            | 2.90                                                               | 4.35                                           |
|      | Lactose                                        |                                                  |                                                                    |                                                |
| 35°  | 6.60                                           | 200-00                                           | 7.01                                                               | 3.50                                           |
|      |                                                | 125-00                                           | 4.42                                                               | 3-53                                           |
|      |                                                | 100.00                                           | 3-51                                                               | 3-51                                           |
|      |                                                | 66-00                                            | 2.31                                                               | 3.46                                           |
|      | Maltose                                        |                                                  |                                                                    |                                                |
| 30°  | 10.00                                          | 200.00                                           | 8.80                                                               | <b>4</b> ·40                                   |
|      |                                                | 125.00                                           | 5-52                                                               | 4-41                                           |
|      |                                                | 100-00                                           | 4-44                                                               | 4.44                                           |
|      |                                                | 66-00                                            | 3.07                                                               | 4.60                                           |

| $K_{\bullet}Fe(CN)_{\bullet} 2.5 \times 10^{-4}M$ |                                     |                            |                                                                                       |
|---------------------------------------------------|-------------------------------------|----------------------------|---------------------------------------------------------------------------------------|
|                                                   | Overall conc of sugar<br>and alkali | Time of<br>treatment<br>hr | Mean zero order<br>$k_{s} \times 10^{s}$<br>(mole 1 <sup>-1</sup> min <sup>-3</sup> ) |
| Lactose                                           | 5.0 × 10 <sup>3</sup> M             | 0                          | 5.58                                                                                  |
|                                                   |                                     | 1                          | 7.65                                                                                  |
| NaOH                                              | 20·0 × 10⁻∙N                        | 2                          | 10-71                                                                                 |
|                                                   |                                     | 3                          | 11.86                                                                                 |
| Maltose                                           | 5-0 × 10⁻³M                         | 0                          | 7.34                                                                                  |
|                                                   |                                     | 1                          | 14-40                                                                                 |
| NaOH                                              | $20.0 \times 10^{-8}$ N             | 2                          | 17.90                                                                                 |
|                                                   |                                     | 3                          | 20-23                                                                                 |

| TABLE 8                                     |
|---------------------------------------------|
| Temp 35°; total vol 100 ml; overall conc of |
| $K_{*}Fe(CN)_{*} 2.5 \times 10^{-4}M$       |

Table 8 shows that there is gradual increase in  $k_a$  values with the time of treatment. This is due to the formation of keto sugars, lactulose<sup>4a,b</sup> and maltulose,<sup>4a</sup> during alkali treatment of lactose and maltose respectively. Since the rates of oxidation of these keto sugars are higher than aldehydo sugars, the enhancements in the reaction rates with time of treatment have been observed. The formation of these keto sugars during alkali treatment is due to Lobry de-Bruyn transformation,<sup>4</sup> according to which, when an aldehydo sugar is treated with alkali, an equilibrium between the keto sugar produced and aldehydo one is established. On the other hand in case of keto sugar after treatment with alkali, an equilibrium is established between the aldehydo sugar produced and the keto one taken.

## Energy of activation, entropy and comparison in the rates of oxidation

Energy of activation has been calculated from the slope of Arrhenius linear plot of log  $k_0$  vs 1/T and also the entropy of activation has been calculated by employing the equation.

$$k = e \cdot \frac{KT}{h} \times \exp(\Delta S/R) \exp(-\Delta E/RT)$$

where k is the reaction rate constant, K is Boltzmann constant and h is the Planck's constant. The results obtained are shown in Table 9.

| TABLE 9    |                                                                              |               |                                    |
|------------|------------------------------------------------------------------------------|---------------|------------------------------------|
| Sugars     | k at $30^{\circ} \times 10^{4}$<br>(1 mole <sup>-1</sup> sec <sup>-1</sup> ) | ΔS<br>(E.U.)  | Energy of activation<br>(cal/mole) |
| Melibiose  | 84.76                                                                        | 3.917         | 20,040                             |
| Cellobiose | 70-35                                                                        | -15.32        | 16,690                             |
| Lactose    | 61-5                                                                         | -14.71        | 16,950                             |
| Maltose    | 79-125                                                                       | <b>2</b> ·087 | 20,630                             |

The values of  $T \times \Delta S$  have been plotted against  $\Delta E$  and it gives a straight line of unit slope shown in Fig. 1. This indicates that there is a tendency for heat and entropy to compensate each other, so that change in free energy is much smaller. Such observations are not common in the literature.

- 44 E. M. Montgomery and C. S. Hudson, J. Amer. Chem. Soc. 52, 2101 (1930);
- \* J. P. L. Bots, Rect. Trav. Chem. 76, 515 (1957);
- S. Peat, P. J. P. Roberts and W. J. Whelan, Biochem. J., 51, XVII (1952).
- The Lobry de- Bruyn-Alberda van Ekenstein transformation by John C. Speck. Jr. in Advances in Carbohydrate Chemistry Vol. 13; p. 63. Academic Press, New York (1958).

This is frequently a case for the given reaction investigated in a series of solvents, and also for homologous reaction in which substituents are introduced in the reactant.<sup>10</sup> Fairclough and Hinshelwood<sup>11</sup> have reported such compensated hydrolysis of ethyl benzoate in alcohol-water mixture. In the present work also the substituents are changing since in the case of disaccharides the reducing units are attached to non-reducing units of hexoses.

Further, in comparing the rates of oxidation of these disaccharides it has been observed that the rates of oxidation of melibiose, maltose and cellobiose are 1.40, 1.28 and 1.14 times the rate of oxidation of lactose. In other words the rates of oxidation of these disaccharides follow the order

melibiose > maltose > cellobiose -: lactose

## DISCUSSION

It is interesting to note that in the halogen oxidations of disaccharides in alkaline media, the total order of the reaction was found to be two, one with respect to each reactant.<sup>3</sup> But in the present oxidations of disaccharides by ferricyanide in alkaline medium, it is evident that the total order of the reaction is one, zero with respect to ferricyanide and one with respect to the reducing sugar. This difference arises since in the halogen oxidations, the sugars are oxidized directly to their corresponding acids as shown

RCHO 
$$\div$$
 I<sub>2</sub>  $\div$  3NaOH  $\rightarrow$  RCOONa  $\div$  2NaI + 2H<sub>2</sub>O

while the present oxidation takes place through 1,2-enediol which is an intermediate product.

On the basis of the experimental results, it appears that the first step involves the reaction between the hydroxyl ion and the reducing sugar leading to the formation of an intermediate enediol which is subsequently oxidized by ferricyanide, the latter being a faster process, so that the reaction becomes zero order with respect to ferricyanide ion. Accordingly, the first step is the slow transformation of the sugar into the intermediate enediol.

$$H$$

$$S + OH^{-} \xrightarrow{k_{1}} C - OH$$

$$slow C - OH$$

$$\downarrow$$

$$R$$

$$R$$

$$R$$

$$Fe(CN)_{6}^{-3} \xrightarrow{k_{3}} Fe(CN)_{6}^{-4} + other reaction products$$

$$(1)$$

where S and en represent the reducing sugar (disaccharides) and intermediate enediol. Considering steady state, the rate expression is

$$-\frac{d[Fe(CN)_{6}^{-3}]}{dt} = \frac{k_{1}k_{2}[S][OH^{-}][Fe(CN)_{6}^{-3}]}{k_{-1} + k_{2}[Fe(CN)_{6}^{-3}]}$$

Since the value of  $k_{-1}$  is very small in comparison to  $k_2[Fe(CN)_6]^{-3}$  it can be neglected. Therefore the final rate expression is

$$-\frac{\mathrm{d}[\mathrm{Fe}(\mathrm{CN})_{\mathbf{s}}]^{-\mathbf{s}}}{\mathrm{d}t} = k_1[\mathrm{S}][\mathrm{OH}^{-}]$$

<sup>18</sup> K. J. Laidler, Reaction Kinetics Vol. 2; p. 46, Pergamon Press, Oxford.

<sup>11</sup> R. A. Fairclough and C. N. Hinshelwood, J. Chem. Soc. 1573 (1937).

en

This shows that the reaction is of first order both with respect to reducing sugar and hydroxyl ion and independent of ferricyanide ion concentration. Bamford and Collins<sup>12</sup> have studied the kinetics of interconversion of glucose and fructose in strongly alkaline solution and have suggested the existence of two enolate ions in tautomeric equilibrium, instead of intermediate enediol as



It may also be noted that reaction rate is not affected by the initial presence of ferrocyanide ion.

<sup>19</sup> C. H. Bamford and J. R. Collins. Proc. Roy. Soc. A204, 85 (1950); A228, 100 (1955).